7 research outputs found

    Ocean Observatories as a Tool to Advance Gas Hydrate Research

    Get PDF
    Since 2009, unprecedented comprehensive long-term gas hydrate observations have become available from Ocean Networks Canada's NEPTUNE cabled ocean observatory at the northern Cascadia margin. Several experiments demonstrate the scientific importance of permanent power and Internet connectivity to the ocean floor as they have advanced the field of gas hydrate related research. One example is the cabled crawler Wally at Barkley Canyon, enabling live in situ exploration of the hydrate mounds and its associated benthic communities through the crawler's mobility and permanent accessibility throughout the year. Another example is a bubble-imaging sonar at Clayoquot Slope, revealing the strong relationship between ebullition of natural gas and tidal pressure, without apparent correlation to earthquakes, storms, or temperature fluctuations, in year-long continuous recordings. Finally, regular observatory maintenance cruises allow additional science sampling including echo-sounder surveys to extend the observatory footprint. Long-term trends in the data are not yet apparent but can also become evident from continuous measurements, as ocean observatories such as NEPTUNE are built for a 25-year lifetime, and expansion of the observatory networks makes these findings comparable and testable. \ud Plain Language Summary Natural gas near the ocean floor creates a rapidly changing environment where it is important to collect data continuously in order to determine the magnitude, speed, and potential mechanism of change. This long-standing challenge of year-round access to the deep ocean has been tackled by Ocean Networks Canada through cabling the northern Cascadia seafloor, providing power and Internet communication-ideal for power-hungry instruments, large data volumes, and real-time access. The presence of gas influences the shape of the seafloor, animal activity, and potential escape of methane, a potent greenhouse gas. A seafloor crawler Wally was operated around deep canyon mounds of gas hydrate (a solid gas-water composite) since 2009 and helped discover environmental changes influencing sea life. Further along the continental slope, an acoustic sonar monitored rising methane bubbles where the bubbling appears to be controlled neither by earthquakes, winter storms, nor subtle temperature changes but actually strongly by tidal pressure. Regular maintenance of the observatory by ship allows more data to be collected near the cabled seafloor sites, extending the observations to a larger area. Ocean observatories are built to last decades and therefore more data for more research can be collected, potentially detecting relatively slow processes as well

    Framing Cutting-Edge Integrative Deep-Sea Biodiversity Monitoring via Environmental DNA and Optoacoustic Augmented Infrastructures

    Get PDF
    Deep-sea ecosystems are reservoirs of biodiversity that are largely unexplored, but their exploration and biodiscovery are becoming a reality thanks to biotechnological advances (e.g., omics technologies) and their integration in an expanding network of marine infrastructures for the exploration of the seas, such as cabled observatories. While still in its infancy, the application of environmental DNA (eDNA) metabarcoding approaches is revolutionizing marine biodiversity monitoring capability. Indeed, the analysis of eDNA in conjunction with the collection of multidisciplinary optoacoustic and environmental data, can provide a more comprehensive monitoring of deep-sea biodiversity. Here, we describe the potential for acquiring eDNA as a core component for the expanding ecological monitoring capabilities through cabled observatories and their docked Internet Operated Vehicles (IOVs), such as crawlers. Furthermore, we provide a critical overview of four areas of development: (i) Integrating eDNA with optoacoustic imaging; (ii) Development of eDNA repositories and cross-linking with other biodiversity databases; (iii) Artificial Intelligence for eDNA analyses and integration with imaging data; and (iv) Benefits of eDNA augmented observatories for the conservation and sustainable management of deep-sea biodiversity. Finally, we discuss the technical limitations and recommendations for future eDNA monitoring of the deep-sea. It is hoped that this review will frame the future direction of an exciting journey of biodiscovery in remote and yet vulnerable areas of our planet, with the overall aim to understand deep-sea biodiversity and hence manage and protect vital marine resources

    Research Trends and Future Perspectives in Marine Biomimicking Robotics

    Get PDF
    Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950–2020), evidencing a sharp research increase in 2003–2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring techn

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that “1 burrow system = 1 animal”, due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Underwater legged robotics: review and perspectives

    No full text
    Nowadays, there is a growing awareness on the social and economic importance of the ocean. In this context, being able to carry out a diverse range of operations underwater is of paramount importance for many industrial sectors as well as for marine science and to enforce restoration and mitigation actions. Underwater robots allowed us to venture deeper and for longer time into the remote and hostile marine environment. However, traditional design concepts such as propeller driven remotely operated vehicles, autonomous underwater vehicles, or tracked benthic crawlers, present intrinsic limitations, especially when a close interaction with the environment is required. An increasing number of researchers are proposing legged robots as a bioinspired alternative to traditional designs, capable of yielding versatile multi-terrain locomotion, high stability, and low environmental disturbance. In this work, we aim at presenting the new field of underwater legged robotics in an organic way, discussing the prototypes in the state-of-the-art and highlighting technological and scientific challenges for the future. First, we will briefly recap the latest developments in traditional underwater robotics from which several technological solutions can be adapted, and on which the benchmarking of this new field should be set. Second, we will the retrace the evolution of terrestrial legged robotics, pinpointing the main achievements of the field. Third, we will report a complete state of the art on underwater legged robots focusing on the innovations with respect to the interaction with the environment, sensing and actuation, modelling and control, and autonomy and navigation. Finally, we will thoroughly discuss the reviewed literature by comparing traditional and legged underwater robots, highlighting interesting research opportunities, and presenting use case scenarios derived from marine science applications
    corecore